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Stability of explicit advection schemes.
The balance point location rule
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SUMMARY

This paper introduces the balance point location rule, providing speci:c necessary and su;cient con-
ditions for constructing unconditionally stable explicit advection schemes, in both semi-Lagrangian and
�ux-form Eulerian formulations. The rule determines how the spatial stencil is placed on the computa-
tional grid. It requires the balance point (the center of the stencil in index space) to be located in the
same patch as the departure point for semi-Lagrangian schemes or the same cell as the sweep point
for Eulerian schemes. Centering the stencil in this way guarantees stability, regardless of the size of
the time step. In contrast, the original Courant–Friedrichs–Lewy (CFL) condition requiring the stencil
merely to include the departure (sweep) point, although necessary, is not su;cient for guaranteeing
stability. The CFL condition is of limited practical value, whereas the balance point location rule al-
ways gives precise and easily implemented prescriptions for constructing stable algorithms. The rule is
also helpful in correcting a number of misconceptions that have arisen concerning explicit advection
schemes. In particular, explicit Eulerian schemes are widely believed to be ine;cient because of stabil-
ity constraints on the time step, dictated by a narrow interpretation of the CFL condition requiring the
Courant number to be less than or equal to one. However, such constraints apply only to a particular
class of advection schemes resulting for centering the stencil on the arrival point, when in fact the
sole function of the stencil is to estimate the departure (sweep) point value—the arrival point has no
relevance in determining the placement of the stencil. Unconditionally stable explicit Eulerian advec-
tion schemes are e;cient and accurate, comparable in operation count to semi-Lagrangian schemes of
the same order, but because of their �ux-based formulation, they have the added advantage of being
inherently conservative. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The primary focus of this paper is on the stability of explicit, �ux-based Eulerian advection
schemes. In particular, the paper attempts to correct a commonly held belief that such schemes
are ine;cient because of severe time-step constraints dictated by a narrow (but not generally
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472 B. P. LEONARD

Figure 1. De:nition of the departure point (DP) and arrival point (AP) in a space–time portrayal of
the advective characteristic in a semi-Lagrangian update. The departure point patch is indicated by the

heavy line (and includes the two adjacent grid-points).

valid) interpretation of ‘the CFL condition’, stemming from the often-cited paper by Courant
et al. [1; 2]. Although a number of papers have appeared showing how to construct uncon-
ditionally stable explicit �ux-form Eulerian advection schemes [3–6], the belief that Eulerian
schemes must satisfy conditional stability constraints remains widespread.
The most common interpretation of the CFL condition is that, for advective stability, the

maximum Courant number magnitude should not exceed unity. This is equivalent to requiring
a �uid particle to travel not more than one mesh width in one time step, and this is often
explained as being a ‘natural’ [7] or ‘physical’ [8] restriction. Since this would indeed place
severe constraints on the time step, explicit Eulerian schemes are generally considered to be too
expensive for practical calculations. By contrast, it is well known that explicit semi-Lagrangian
advection schemes based on tracking individual �uid particles [9] can be constructed so that
there are no stability constraints on the time step. In fact, this has been one of the prime
motivating factors in the ongoing development of semi-Lagrangian schemes. This apparent
circumvention of ‘the CFL condition’ has resulted in some lack of clarity in the literature
regarding the relationship between semi-Lagrangian and Eulerian schemes.
In this paper we will see that there is no con�ict between the unconditional stability of

explicit semi-Lagrangian schemes and the conditional stability of a very special class of
explicit Eulerian schemes. The apparent di;culty stems from how the computational stencil
is located. The common interpretation of the CFL condition—Courant-number-less-than-or-
equal-to-one (or, in some cases, less-than-or-equal-to-two)—stems from speci:cally locating
the center of the spatial stencil in the vicinity of the arrival point, when seeking information
about the departure point. (See Figure 1 for the semi-Lagrangian de:nition of the departure
and arrival points and the departure point patch.) This arrival-point-centered stencil de:nes
the special class of Eulerian schemes referred to above. If, however, the spatial stencil is
appropriately located with respect to the departure point, it is possible to construct stable
explicit advection schemes with no restrictions on the time step. The question of just exactly
what constitutes appropriate placement is the main subject of this paper.
In semi-Lagrangian terminology, the original CFL condition (for advection) merely re-

quires the spatial stencil to be located so that it includes the departure point (but, perhaps it
should be stressed, not necessarily the arrival point!). Although this is a necessary condition
for stability, it is not su;cient nor is it generally helpful for practical guidelines on stable
stencil placement. However, by introducing the concept of the balance point de:ned at the
center of the spatial stencil in index space, a much more precise stencil-location rule results.
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Figure 2. De:nition of the left and right sweep points, SPl and SPr , in a space–time portrayal of the
advective characteristics in a �ux-integral method. The two sweep point cells are indicated by the

heavy lines (and include the respective adjacent faces).

For semi-Lagrangian schemes using explicit forward-in-time integration over a single time
step:

The balance point must be located in the same patch as the departure point.

This is both necessary and su;cient for stability without imposing restrictions on the time
step. It is a practical prescription for stable stencil placement (and already used intuitively in
all successful semi-Lagrangian formulations).
The same type of analysis can be applied to single-time-step explicit Eulerian schemes,

using the �ux-integral approach [4]. In this case, the sweep point (the foot of the advective
characteristic sweeping �ux though a particular control-volume face of the update cell, UC)
is the analog of the departure point (see Figure 2). The corresponding balance point location
rule for each sweep point is:

The balance point must be located in the same cell as the sweep point.

Again, this is both necessary and su;cient for unconditional stability. Unrestricted-time-step
explicit �ux-integral methods of this type can be very e;cient and accurate, and have the
additional advantage of being inherently conservative.
For the stability of explicit advection schemes, the location of the spatial stencil is all

important. The width of the stencil is irrelevant as far as stability is concerned. If the location
of the stencil is pre-speci:ed, then the (original) Courant–Friedrichs–Lewy inclusion condition
places both upper and lower limits on the time step. For some :rst- and second-order methods,
this happens to also be su;cient for stability. However, for third- and higher-order methods,
the CFL condition is insu;cient for stability and of no practical value. If the pre-speci:ed
stencil is required to include the arrival point in its stable region, this results in the Courant-
number-less-than-or-equal-to-one condition (or in some cases, less-than-or-equal-to-two). And
this is true irrespective of the total width of the stencil! But if the position of the departure
point (sweep point) is found :rst (corresponding to a speci:ed time step), then the location
of the spatial stencil can be chosen to satisfy either the Courant–Friedrichs–Lewy condition
or the balance point location rule. In general, the former is not speci:c enough to guarantee
stability, whereas the latter always is.
The conditionally stable ‘classical’ explicit Eulerian schemes, having pre-speci:ed stencils

speci:cally moored to the arrival point, should be viewed as special cases of the general
class of explicit advection schemes discussed in this paper. Because of their severe time-step
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restrictions, they are sometimes too ine;cient for practical calculations. But unrestricted-time-
step explicit Eulerian schemes are easy to construct using the balance point location rule, and
(provided higher odd-order interpolation is used) are highly computationally e;cient.
Although the main focus of the paper is on Eulerian schemes, we will :rst derive, in the next

section, the basic ideas of the balance point location rule within a semi-Lagrangian framework,
since the concepts are somewhat simpler and the terminology likely to be more familiar. The
idea of ‘centering’ the spatial stencil on the departure point has been in common use in
semi-Lagrangian schemes since their inception. However, there has apparently never been any
general analysis of why centering on the departure point (as opposed to merely inclusion
of the departure point, as necessitated by the original CFL condition) is both necessary and
su;cient for stability. Some subtleties regarding signi:cant diMerences between odd- and
even-order schemes are also addressed. In particular, the need for choosing between upwind
and downwind biasing of the stencil for even-order interpolants is discussed. And conditions
relating to arrival point centered schemes are clari:ed.
The development is based on von Neumann stability analysis, assuming a uniform one-

dimensional grid and uniform advecting velocity. In order to gain some feeling for estimating
the departure point value and the corresponding eMect on the overall scheme, a sequence of
collocated piecewise-polynomial interpolants is considered, ranging from :rst-order through
fourth-order. Some generalizations to multidimensional grids and other types of interpolants
are brie�y discussed.
Conservative, �ux-based explicit Eulerian schemes are then considered, with a brief review

of the �ux-integral method. We will see that there is a strong correlation between �ux-integral
Eulerian schemes and particle-tracking semi-Lagrangian schemes of the same order. Because
of this, stability analysis of each Eulerian scheme can be reduced to that of the corresponding
semi-Lagrangian scheme, previously considered. Whereas for semi-Lagrangian schemes, the
stencil has to be centered on the departure point for interpolating the advected variable directly,
for Eulerian schemes, the stencil needs to be centered on the sweep point for interpolation of
the �ux-integral variable.
Following some concluding remarks, Appendix A summarizes a number of useful recursion

relations for generating arbitrarily higher-order methods. This leads to a proof of the balance
point location rule in Appendix B.

2. THE BALANCE POINT LOCATION RULE

Referring to Figure 1, designate grid-point i as the arrival point (at xi). An explicit semi-
Lagrangian update sets the predicted value of the advected variable at i equal to the current
value at the departure point

�+
i ≡�(xi; t +Ot)=�DP =�(xDP; t)≡�(xi − ũOt; t) (1)

If the departure point happens to fall exactly at a grid-point, then exact point-to-point transfer
results. In general, though, the departure point will fall in a patch between two grid-points,
and appropriate estimation of the departure point value is required. [We de:ne a patch to be
the region between (and including) two adjacent grid-points.] Note that ũ in Equation (1)
is an average advecting velocity over the time interval Ot. This is usually estimated by an
iterative process and will incur some error [9]. This error in the departure-point location is
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Figure 3. Generic � interpolation stencil for an even-order semi-Lagrangian method. M is an even
integer. The balance point is at grid-point k. In the case shown, the balance point (BP) has been
chosen to be at the downwind end of the patch containing the departure point. In this case, 0¡�¡1.

quite distinct from the error in the estimation of the departure-point value itself. We assume
that ũ has been suitably determined [10].
Given the departure point location, suppose that the departure point value is to be estimated

using piecewise-polynomial interpolation collocated at an appropriate number of grid-point
values. A Pth-degree polynomial requires P + 1 grid-points. In particular, let M be an even
integer. Figure 3 shows an (M + 1)-point stencil for an M th-order interpolant. Constant grid
spacing, h, is assumed for simplicity. The stencil is chosen to be well upstream (to the left,
for ũ¿0) of the arrival point, grid-point i, so that there is no pre-speci:ed overlap. The
balance point (BP) is de:ned to be at the center of the stencil, designated here as grid-point
k. As seen in the :gure, the stencil extends from k −M=2 to k +M=2. The relative position
of the stencil with respect to the departure point is de:ned such that the normalized local
co-ordinate � is positive for DP anywhere to the left of grid-point k (and negative to the
right). Clearly, from the diagram

ũOt= h(i − k) + h� (2)

or, in terms of Courant number

c=
ũOt
h

=(i − k) + � (3)

First, we should be careful to note that the (original) Courant–Friedrichs–Lewy condition
requires the departure point to be included within the stencil

−M
2
6�6+

M
2

(4)

Equivalently, in terms of the Courant number

(i − k −M=2)6c6(i − k +M=2) (5)

or, in terms of the time step itself

(i − k −M=2)
h
ũ
6Ot6(i − k +M=2)

h
ũ

(6)

Note, particularly, the lower bound on Ot as well as the upper bound, assuming (as we have)
that k +M=2¡i. On the other hand, if the stencil happens to include the arrival point (i.e.,
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Figure 4. Generic � interpolation for an odd-order semi-Lagrangian method. N is an odd integer. The
balance point is at k − 1

2 , at the center of the patch containing the departure point.

if k + M=2¿i, but with k6i), the left-hand side of (6) is no longer positive, so the lower
bound becomes simply Ot¿0.
Figure 4 shows the corresponding situation for odd-order schemes. Let N be an odd in-

teger; the diagram shows an (N + 1)-point stencil for an N th-degree collocated polynomial
interpolant. In this case, the balance point is midway between two grid-points at the center of
the stencil. Choose grid-point k to be as shown, so that the balance point is at (k − 1

2 ). Once
again, we assume that the stencil is well to the left of the arrival point, grid-point i. As in
the even-order case, Figure 3, the relative position of the stencil with respect to the departure
point in Figure 4 is de:ned by the normalized distance � from grid-point k to the departure
point. In this case, the Courant–Friedrichs–Lewy (inclusion) condition requires

− (N − 1)
2

6�6
(N + 1)

2
(7)

or, in terms of the Courant number

i − k − (N − 1)
2

6c6i − k +
(N + 1)

2
(8)

and, for the time step[
i − k − (N − 1)

2

]
h
ũ
6Ot6

[
i − k +

(N + 1)
2

]
h
ũ

(9)

once again noting the lower as well as the upper bound on Ot, the former being replaced by
Ot¿0 if the stencil includes the arrival point.
In order to construct necessary and su;cient conditions for advective stability, we will

consider a hierarchy of piecewise polynomials, beginning with a :rst-order method and pro-
ceeding to higher and higher order. Figure 5 shows the :rst-order situation, a linear interpolant
between two adjacent grid-point values. Since this is an odd-order method (N =1), the balance
point is located at (k− 1

2 ), as in the general odd-order case. According to the semi-Lagrangian
update, linear interpolation implies

�+
i =�DP = ��k−1 + (1− �)�k (10)

or, rearranging

�+
i =�k − �(�k − �k−1) (11)
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Figure 5. Linear interpolation for a :rst-order semi-Lagrangian scheme. The balance point is at the
center of the departure point patch.

This is equivalent to a :rst-order ‘upwind’ update of the value at grid-point k (using an
‘eMective’ Courant number of � over a shorter time interval, �t= �h=ũ) followed by point-to-
point transfer from k to i.
A Fourier–von Neumann analysis follows the evolution of a wave of the form

�(x; t)=A(t) exp(Y�x) (12)

where � is the wavenumber and Y the imaginary unit. For the exact advection equation

@�
@t

=−ũ
@�
@x

(13)

we get, by direct substitution

A′(t) exp(Y�x)=−ũY�A(t) exp(Y�x) (14)

This implies a complex amplitude, A(t)=A0 exp(−Y�ũt). Thus, for the original wave

�(x; t)=A0 exp[Y�(x − ũt)] (15)

—a travelling wave with a phase speed of ũ.
Over a time step Ot, the exact complex amplitude ratio (CAR) is [11]

Gexact =
�(x; t +Ot)

�(x; t)
=
A(t +Ot)
A(t)

= exp(−Y�ũOt) (16)

which can be rewritten as

Gexact = exp(−Yc�)= cos(c�)− Y sin(c�) (17)

where c is the Courant number and � the non-dimensional wavenumber

�=�h (18)

In the case of the :rst-order numerical algorithm, Equation (11), we have

�+
i =A(t +Ot) exp(Y�xi)=A(t)[exp{Y�[xi − (i − k)h]}

− �(exp{Y�[xi − (i − k)h]} − exp{Y�[xi − (i − k + 1)]})] (19)
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This gives a numerical complex amplitude ratio for the :rst-order semi-Lagrangian scheme

GSL1(c; �) =
A(t +Ot)
A(t)

= exp[−Y(i − �)�]{1− �[1− exp(−Y�)]}

= exp[−Y(i − k)�]G1(�; �) (20)

The :rst factor represents exact point-to-point transfer from grid-point k to i. As suggested by
the notation, the second factor has the form of a :rst-order ‘upwind’ CAR for a local update
at grid-point k, using the ‘eMective’ Courant number, �.
Stability requires |GSL1|61. Since the exponential (shift) factor has a magnitude identically

equal to 1, we get the condition on the ‘local’ CAR

|G1|61 for stability (21)

If we write out G1 as a function of �, with � as a parameter

G1(�; �)=1− �(1− cos �)− Y(� sin �) (22)

noting that, in general

|G|=
√
[Re(G)]2 + [Im(G)]2 (23)

we :nd, in this case, that

|G1|=
√
[1− 2�(1− �)(1− cos �)] (24)

Figure 6 shows |G1| as a function of �, with � as a parameter ranging from 0 to � rad, in
20◦ increments. Note that � is shown positive to the left, in order to better correlate with
the earlier :gures. For �=� rad, we see from Equation (22) that G1 is real, equal to 1− 2�
(negative values of this are shown dashed in the :gure); so |G1|= |1 − 2�| for �=�. From
the :gure, we see immediately that all wavenumbers are stable for

06�61 (25)

and all are unstable for �¡0 and �¿1. The unstable regions are shown shaded between
�=0 and �. Referring back to Figure 5, this means that, given the location of the departure
point in a particular patch, the (two-point) :rst-order stencil must be located so that the
stencil includes the departure point—i.e., it covers the same patch. In this case then, the CFL
condition happens to be both necessary and su;cient for stability [12].
Another way of describing the stability condition (which, as we will see, is more generally

applicable) is in terms of the balance point of the stencil (located at k − 1
2 for odd-order

schemes), following from (25) and referring to Figure 5:

The balance point must be located in the same patch as the departure point.

This is the balance point location rule for semi-Lagrangian schemes. [It is equivalent to the
CFL inclusion condition in this (:rst-order) case (and will be for second-order, as well).
But for third- and higher-order schemes, the balance point location rule gives very speci:c
necessary and su;cient prescriptions for the location of the stencil with respect to the de-
parture point, whereas the Courant–Friedrichs–Lewy condition gives much broader (and only
necessary but not su;cient) location bounds.]
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Figure 6. Stability diagram for |G1(�; �)|. The unstable regions are shaded between �=0 and � rad.
Note the symmetry about �=0:5. The dashed line shows the negative branch of the real-valued line

representing the short-wavelength limit, G1(�;�)=1− 2�.

The phase of a numerical G is perhaps best portrayed by the phase error

PE =ph(Gnum)− ph(Gexact) (26)

and since Gexact = exp[−Y(i − k)�] exp(−Y��), we see that

PEP =ph(GP)− (−��) (27)

or, more speci:cally

PEP =artan
[
Im(GP)
Re(GP)

]
+ �� (28)

where GP is the local CAR for a Pth-order scheme. For the :rst-order case, we have, from
Equation (22)

PE1 =−artan
{

� sin �
1− �(1− cos �)

}
+ �� (29)

where the usual care must be taken regarding the inverse tangent, depending on the quadrant
involved in the complex plane.
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Figure 7. Phase error of the :rst-order scheme over the stable range, 06�61, for
� ranging between 0 and � rad in 20◦ increments. The short-wavelength boundaries

(�=�) are given by PE1 =�� and �(�− 1).

Figure 7 shows PE1(�; �) for �=0 to � rad in 20◦ increments over the stable range of �.
Note, in particular, that at the short-wavelength limit (�=�, sin �=0), PE1 =�� or �(�−1),
with a discontinuity at �=0:5, corresponding to G1 passing through zero. Note also that
the phase error is zero at �=0:5 for all wavelengths. (These are features common to all
odd-order schemes.) For 0¡�¡0:5, the phase error is positive—this represents phase lag
(the numerical phase is less negative than the exact phase). And for 0:5¡�¡1, we see a
corresponding phase lead. For odd-order schemes, we will :nd that the phase error portrait is
always antisymmetrical about �=0:5, with all values contained within the respective triangular
regions.
We now turn to a second-order semi-Lagrangian scheme resulting from parabolic inter-

polation collocated at three adjacent grid-points, as shown in Figure 8. In this case, the
semi-Lagrangian update is

�+
i =�DP =�k − �

2
(�k+1 − �k−1) +

�2

2
(�k+1 − 2�k + �k−1) (30)

which could be interpreted as a local second-order ‘central’ or Lax–WendroM [13] update at
grid-point k using the eMective Courant number �, followed by point-to-point transfer from k
to i. In this case, the semi-Lagrangian complex amplitude ratio is [3]

GSL2 = exp[−Y(i − k)�]G2 (31)

where G2 is the local second-order ‘central’ (Lax–WendroM) CAR

G2(�; �)=1− �2(1− cos �)− Y(� sin �) (32)
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Figure 8. Parabolic interpolation for a second-order semi-Lagrangian scheme. In this
case, the balance point has been placed at the downwind end of the departure point

patch, giving a downwind-biased stencil.

Compare this with the :rst-order CAR given by Equation (22). Once again, the stability
conditions focus on the local CAR, |G2|61. We :nd in this case that

|G2|=
√
[1− �2(1− �2)(1− cos �)2] (33)

which is shown in Figure 9. From Equation (32), we see that G2(�;�)=1 − 2�2; negative
branches of this parabola are shown dashed in the :gure. Note that |G2|=0 at the points
�= ±1=

√
2. Here, we see immediately from the :gure that the second-order semi-Lagrangian

scheme is stable for all wavenumbers within the range

−16�6+ 1 (34)

and unstable for �¡−1 and �¿+1. In other words, the scheme is stable provided we use
interpolation (as opposed to extrapolation). Again, this is equivalent to the CFL inclusion
condition, which happens to be su;cient in this case, as well.
Referring back to Figure 8, note the signi:cance of positive and negative �. For positive

� (the departure point between k − 1 and k), the stencil has a downwind bias relative to the
location of the departure point. This is the situation depicted in Figure 8. For negative �, the
stencil is located so that the departure point is between k and k + 1, representing an upwind
bias in the stencil location. Figure 10 shows this situation. In the former case (positive �),
the overall algorithm is equivalent to a local Lax–WendroM update at grid-point k (using the
eMective Courant number �), followed by point-to-point transfer from k to i. In the latter
case (negative �), the overall algorithm is equivalent to a second-order ‘upwind’ update at
grid-point (k + 1) using an eMective Courant number of (1− |�|), followed by point-to-point
transfer from (k + 1) to i.
The phase error of the second-order scheme is shown in Figure 11 over the stable range

of �. In this case, the phase of G2(�;�) for positive � (downwind biasing) is 0 or −�, and
for negative � (upwind biasing), it is 0 or +�. Thus, the short-wavelength phase error is
PE2 =��, �(� + 1), or �(� − 1), with discontinuous jumps where G2(�;�) passes through
zero (at ±1=√2). For 0¡�¡1, the error is overwhelmingly phase lag (with a small portion
of very short-wavelength phase lead for 1=

√
2¡�¡1). The :gure is antisymmetrical about

�=0, so that an upwind-biased scheme (−1¡�¡0) typically displays mostly leading phase
error. These general features will be found to be typical of all even-order schemes.
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Figure 9. Stability diagram for |G2(�; �)|. The unstable regions are shaded between �=0 and �
rad. Note the symmetry about �=0. The dashed curves show negative branches of the real-valued

parabola representing the short-wavelength limit, G2(�;�)=1− 2�2.

Figure 10. Parabolic interpolation for a second-order semi-Lagrangian scheme when the balance point
is chosen to be at the upwind end of the departure point patch, giving an upwind-biased stencil.

The stability condition given by (34) requires the second-order stencil to include the de-
parture point, as shown in Figures 8 and 10. Once again, this is equivalent to the (original)
CFL condition. However, another way of stating this is:

The balance point must be located in the same patch as the departure point.
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Figure 11. Phase error of second-order scheme over the stable range, −16�6 + 1, for � ranging
between 0 and � rad. Downwind biasing (0¡�61) correlates with primarily phase lag, whereas

upwind biasing (−16�¡0) mostly produces phase lead.

In this case, as seen from Figures 8 and 10, there are two possible locations of the stencil
for a given departure point:

(i) Downwind biasing: The balance point (being a grid-point for even-order schemes) is
chosen to be at the downwind end of the departure-point patch, Figure 8.

(ii) Upwind biasing: The balance point in this case is chosen to be at the upwind end of
the departure point patch, giving the upwind-biased stencil of Figure 10.

In other words, for second-order (and, in fact, all even-order) schemes, we need to make
a velocity-direction-dependent choice between downwind and upwind biasing because of the
odd number of interpolation points. In general, downwind biasing is strongly associated with
phase-lag numerical dispersion, whereas upwind biasing corresponds to phase lead. Velocity-
direction-independent (e.g., odd-order) stencils correlate with very low phase error.
It should perhaps be pointed out that the ‘classical’ Lax–WendroM scheme uses a downwind-

biased stencil (with respect to the departure point). For example, Figure 12 shows the Lax–
WendroM-scheme for 0¡c61. In this case, k= i (i.e., the balance point is located at the
arrival point), and � is replaced by the actual Courant number, c. Compare Figures 12

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:471–514



484 B. P. LEONARD

Figure 12. The Lax–WendroM scheme for ũ¿0. Note the downwind biasing of the 3-point stencil
with respect to the departure point; BP is at the downwind (right-hand) end of the departure point

patch, and this is also the arrival point.

Figure 13. The Lax–WendroM scheme for ũ¡0. Note that there is still a downwind bias in the 3-point
stencil with respect to the departure point; BP is at the downwind (left-hand) end of the departure

point patch, which is still the arrival point.

and 8. If −16c¡0, as shown in Figure 13, the stencil is still downwind biased (with
respect to the departure point—which is the point at which interpolation takes place), as
the velocity is now in the negative direction. The Lax–WendroM scheme is usually called a
second-order ‘central’ scheme because the stencil is centered with respect to the arrival point
(grid-point i)—Figures 12 and 13 show the same three-point stencil centered on grid-point
i. But the arrival point is totally irrelevant as far as the interpolation of the departure-
point value is concerned. The departure point location is the important point of reference.
The Lax–WendroM scheme (and its well-known concomitant phase-lag dispersion) should be
thought of as being associated with a downwind-biased stencil (with respect to the departure
point).
Alternatively, second-order ‘upwinding’, portrayed in Figure 14 (for ũ¿0), is indeed based

on an upwind-biased stencil, at least for 0¡c¡1 [3]. In this case, the balance point is at
i−1. As is well known, second-order upwinding manifests phase-lead dispersion for 0¡c¡1.
However, for 1¡c¡2, the scheme shows phase-lag dispersion equivalent to that of a Lax–
WendroM scheme at an eMective Courant number of (c− 1) [3]. The reason for this is easily
seen in Figure 15, where the notation implies a local Lax–WendroM update of the value at
grid-point (i − 1), using �= c − 1; then point-to-point transfer from i − 1 to i [3]. In this
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Figure 14. Second-order ‘upwinding’ for 0¡c¡1. Note that the 3-point stencil is
indeed upwind biased with respect to the departure point; i.e., BP is at the upwind

end of the departure point patch at i − 1.

Figure 15. Second-order ‘upwinding’ for 1¡c¡2. Note that, in this case, the 3-point
stencil is now downwind biased with respect to the departure point. This is equivalent

to a Lax–WendroM update at i − 1, �+
i =�LW

i−1 =�DP.

case, the stencil for the second-order ‘upwind’ scheme is (with respect to the departure point)
downwind biased!
We should note that the classical Lax–WendroM scheme is stable for (actual) Courant

numbers between −1 and +1; i.e., for |c|61. Similarly, the second-order-upwind algorithm is
stable for 06c62 for ũ¿0, and for −26c60 for ũ¡0; in other words, for |c|62. These are,
of course, just special cases of the general stability conditions given by (34)—for � = c in
the former case, and �= c−1 (for ũ¿0) or �=1−|c| (for ũ¡0) in the latter. These Courant
number restrictions represent severe constraints on the time step. Note that they result from
having the balance point of the stencil speci:cally located in the same patch as the arrival
point—even though the stencil’s only function is the interpolation of the departure point value.
The stability of the resulting special class of advection schemes is controlled by what is most
commonly called ‘the CFL condition’: |c|61 for so-called ‘central’ even-order schemes (or,
in the case of even-order ‘upwind’ schemes, |c|62). It should be clear from what has been
described already that the arrival point should play no role in establishing location conditions
on stable placement of the computational stencil. Location of the stencil with respect to the
departure point is all that matters.
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Figure 16. Cubic interpolation for a third-order semi-Lagrangian scheme. The balance point is at the
center of the departure point patch.

Moving now to third-order, corresponding to cubic interpolation collocated on a four-point
stencil, Figure 16, we :nd that the explicit semi-Lagrangian update is [14]

�+
i =�k − �

2
(�k+1 − �k−1) +

�2

2
(�k+1 − 2�k + �k−1)

+
�(1− �2)

3!

[
1
2
(�k+2 − 2�k+1 + 2�k−1 − �k−2)

− 1
2
(�k+2 − 4�k+1 + 6�k − 4�k−1 + �k−2)

]
(35)

Note in particular how the update builds on the second-order algorithm, Equation (30). The
expression in the square brackets is actually a third diMerence centered at (k − 1

2 ), namely
(�k+1 − 3�k + 3�k−1 − �k−2), rewritten in terms of diMerences centered at grid-point k. This
notation is useful for comparing higher-order methods. Recursion relations of this type are
explored in Appendix A. As usual, the semi-Lagrangian CAR factors into a shift operator (of
unity magnitude) multiplied by a local (in this case, third-order) CAR

GSL3 = exp[−Y(i − k)]G3 (36)

where G3 is given by

G3(�; �) = 1− �2(1− cos �)− �(1− �2)
3

(1− cos �)2

− Y
[
� sin �+

�(1− �2)
3

(1− cos �) sin �
]

(37)

From Equation (23), the magnitude is found to be

|G3|=
√
{1− �(1 + �)(1− �)(2− �)[ 13 (1− cos �)2 + 2

9�(1− �)(1− cos �)3]} (38)
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Figure 17. Stability diagram for |G3(�; �)|. The unstable regions are shaded. Note the sym-
metry about the balance point at �=0:5. The dashed curves show the negative branches of
the real-valued cubic representing the short-wavelength limit, G3(�;�)=1−4=3�−2�2 + 4=3�3.
On the �-axis, the heavy line shows the stable region, the dashed line signi:es extrapolation.

Note the isolated stable points, �= − 1 and +2.

This is shown in Figure 17 for the usual parameter values. The :gure also shows negative
branches of the cubic representing real values of G3(�;�) from Equation (37). Clearly, the
only range that is stable for all wavenumbers is

06�61 (39)

Instability (at some or all wavenumbers) occurs for �¡0 and �¿1, except at the isolated
points �≡−1 and 2, representing exact point-to-point transfer to i from (k + 1) and (k − 2),
respectively. In this case, we see that the CFL condition is not su;cient for stability. For the
stencil to include the departure point, we would require

−16�62 (40)

which should be compared with the stability condition (39). Referring to Figure 16, this im-
plies that, although interpolation (as opposed to extrapolation) is necessary, it is not su;cient;
interpolation along the ‘wings’ of the cubic, between (k − 2) and (k − 1) or between k and
(k+1) in Figure 16, produces an unstable advection algorithm. In terms of practical guidelines
for placement of the stencil, the Courant–Friedrichs–Lewy condition is not any more helpful
than saying that we are interpolating (rather than extrapolating). But, once again, the balance
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Figure 18. Phase error of the third-order scheme over the stable range, 06�61, for � between 0 and �
rad. Note the similarity to Figure 7 for :rst-order, but the third-order error is generally much smaller.

point location rule gives a precise (necessary and su;cient) prescription for stable stencil
placement:

The balance point must be located in the same patch as the departure point.

For third-order (as with :rst-order and, as will become clear, all odd-order) schemes, the
balance point location rule gives a unique prescription for the location of the stencil with
respect to the departure point. Only the single central patch of the stencil (containing the
balance point) is stable for odd-order advection schemes.
Figure 18 shows the phase-error behavior for the third-order scheme. We immediately see

a general similarity with that of the :rst-order scheme of Figure 7, but note that (except for
the short-wavelength limit—which is always the same for any odd-order scheme) the third-
order phase error for any given wavenumber is considerably smaller in magnitude. Also, by
comparison with Figure 11, it is clear that the third-order phase accuracy is much better than
second-order. This is a general trend: odd-order schemes are generally much better behaved
in terms of phase accuracy than even order.
Proceeding to higher-order, we now consider a :ve-point fourth-order stencil involving a

collocated quartic, as shown in Figure 19. The explicit update is [14]

�+
i =�k − �

2
(�k+1 − �k−1) +

�2

2
(�k+1 − 2�k + �k−1)

+
�(1− �2)

3!

[
1
2
(�k+2 − 2�k+1 + 2�k−1 − �k−2)

− �
4
(�k+2 − 4�k+1 + 6�k − 4�k−1 + �k−2)

]
(41)
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Figure 19. Quartic interpolation for a fourth-order semi-Lagrangian scheme. In this
case, the balance point has been placed at the downwind end of the departure point

patch, giving a downwind-biased stencil.

This should be compared carefully with the third-order update, Equation (35); the two formulas
diMer only in the coe;cient of the fourth diMerence. (Also see Appendix A for general
recursion relations.) The corresponding local fourth-order CAR is given by

G4(�; �) = 1− �2(1− cos �)− �2(1− �2)
6

(1− cos �)2

− Y
[
� sin �+

�(1− �2)
3

(1− cos �) sin �
]

(42)

and this should be compared, term-by-term, with the third-order formula, Equation (37). The
magnitude, calculated from the general formula, Equation (23), is shown in Figure 20. As
usual, because of the common sine factor in the imaginary part, G4 is real for �=� rad;
negative branches of the corresponding quartic representing G4(�;�) from Equation (42) are
shown dashed in the :gure. This :gure is typical of all higher even-order schemes. Stability
at all wavenumbers occurs over a continuous range of � values only within

−16�6+1 (43)

with instability (at some or all wavenumbers) elsewhere, except at speci:c isolated integer
values of � (in this case, �= ±2), re�ecting exact point-to-point transfer. The CFL condition
would require

−26�6+2 (44)

which, of course, is already required by the fact that we are interpolating. However, only the
two central patches correspond to stable interpolation; interpolation within the wings of the
quartic leads to advective instability. As usual, the balance point location rule gives precise
(necessary and su;cient) speci:cation for stable interpolation:

The balance point must be located in the same patch as the departure point.
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Figure 20. Stability diagram for |G4(�; �)|. The unstable regions are shaded. Note the symmetry about the
balance point at �=0. The dashed curves show negative branches of the real-valued quartic representing
the short-wavelength limit, G4(�;�)=1−8=3�−2�2 + 2=3�4. Note the isolated stable points, �= ± 2.

As with all even-order schemes, the balance point location rule gives two possible locations
for stable interpolation, corresponding to downwind biasing of the stencil (the case shown in
Figure 19), where the balance point is downwind of the departure point, or upwind biasing,
where the balance point (grid-point k) would be located at the upwind end of the patch
containing the departure point (envisage DP between k and k + 1).
The fourth-order phase error is shown in Figure 21. We see a strong resemblance to the

second-order scheme of Figure 11, but (except for �=�) with a smaller (in magnitude)
error at any given wavelength. It is instructive to compare the phase error behavior of the
schemes considered so far (Figures 7, 11, 18 and 21). The general similarity between the
odd-order schemes on the one hand and the even-order schemes on the other is clear. The
phase accuracy of any odd-order scheme (e.g., third-order) is seen to be generally much
better than that of neighboring even-order schemes (e.g., second- or fourth-order). Numerical
simulations con:rm this observation [4]. Odd-order results are always very well behaved
in terms of phase accuracy, whereas even-order results are plagued with serious numerical
dispersion error—phase lag for downwind-biased schemes, phase lead for upwind biasing.
Higher-order schemes follow a predictable pattern. In all odd-order cases, the necessary and

su;cient stability conditions are given by

06�61 (odd order) (45)
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Figure 21. Phase error of the fourth-order scheme over the stable range, −16�6+1, for � between 0
and � rad. Note the similarity to Figure 11 for the second-order. Also note that the error is considerably

worse than that of the third-order scheme, Figure 18.

and for all even-order schemes

−16�6+ 1 (even order) (46)

Both of these stability conditions are automatically speci:ed by the balance point location rule.
The rule gives a unique prescription for locating the stencil with respect to the departure point
for stable odd-order schemes. For even-order, there are always two possibilities corresponding
to downwind or upwind biasing. Note that, for higher-order schemes, the CFL condition does
not discriminate between advectively stable and unstable portions of the interpolation stencil,
whereas the balance point location rule does.
So far, we have looked only at one-dimensional semi-Lagrangian schemes. In multidi-

mensions, many semi-Lagrangian formulations use tensor-product piecewise-polynomial inter-
polants on structured quadrilateral or hexahedral grids. In these cases, the multidimensional
complex amplitude ratios factor into a product of one-dimensional components

G3D =GxGyGz (47)

Then the balance point location rule applies separately in each co-ordinate direction. Equiv-
alently, we can de:ne a multidimensional balance point at the center of the stencil and two-
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dimensional (surface) patches and three-dimensional (volume) patches in an obvious way.
The balance point location rule remains the same:

The (multidimensional) balance point must be located in the same
(multidimensional) patch as the departure point.

As with one-dimensional methods, this gives a unique stencil location for odd-order schemes
and 2D possibilities for even-order, where D is the dimensionality. So, for multidimensional
even-order schemes, we need to make further velocity-component-direction-dependent choices
in each co-ordinate direction.
Although we have based the development of the balance point location rule theory on

piecewise-polynomial interpolants, it appears (judging from the success of semi-Lagrangian
schemes) that other forms of interpolants must have closely related stability conditions. For
example, multidimensional global interpolants such as cubic splines are very popular (and
successful) in many semi-Lagrangian formulations. Odd-order splines are ‘centered’ within
each patch in the sense that, in any one co-ordinate direction, for a given patch they use an
equal amount of information from both positive and negative directions along the co-ordinate.
The ‘balance point’ of the local part of the global stencil is always automatically in the
center of the patch being interpolated. Shape-preserving techniques do not seem to corrupt
the stability of semi-Lagrangian schemes, provided the underlying basic interpolation is stable.

3. CONSERVATIVE EXPLICIT EULERIAN SCHEMES

Until fairly recently, it was generally believed that conservative (�ux-form) explicit Eulerian
advection schemes, based on a :xed control-volume formulation, were limited to methods gov-
erned by the Courant-number-less-than-or-equal-to-one (or, in some cases, two) condition. In
1992, Roache’s ground-breaking paper on the ‘�ux-based modi:ed method of characteristics’
[6] showed how to extend conservative explicit Eulerian schemes to large time steps. Al-
though Roache’s formulation was con:ned to second-order, other publications soon followed,
generalizing the large-Ot formulation to arbitrarily high-order (including shape preservation)
[3; 4] and to multidimensions [5]. The latter schemes are based on the �ux-integral concept,
which is brie�y reviewed here and placed within the context of the balance point location
rule.
The formulation begins with the conservative form of the advection equation

@�
@t

= − @(u�)
@x

(48)

This is averaged over a control volume of width hi and over a time step Ot, giving

V�+
i − V�i

Ot
=

ũl�̃l − ũr�̃r

hi
(49)

where the bars signify cell averages, ũ‘ and ũr are time-averaged advecting velocities at the
left and right faces of the control volume, and �̃‘ and �̃r are also time-averaged face values
of the advected variable. The only approximation in Equation (49) is that we have neglected
temporal correlations between u and � at the cell faces (in other words, time-averaged products
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Figure 22. Basic concept of the �ux integral method. The shaded area represents the �ux of the material
through the right face of cell i in time Ot.

are replaced by products of time averages). We assume that the (time-averaged) advecting
velocities at each face are known and unique to each face

ũr(i) = ũ‘(i + 1) (known) (50)

Also the (as yet, unknown) time-averaged face values themselves are required to satisfy a
face-uniqueness condition

�̃r(i) = �̃‘(i + 1) (to be found) (51)

Equations (50) and (51) taken together guarantee face �ux uniqueness, which in turn is
responsible for inherent conservation.
If we could estimate the (time-averaged) face values, the basic control-volume equation,

Equation (49), provides an update algorithm for the cell-average values. The �ux-integral
method is based on estimating subcell behavior, �(x), satisfying the cell-average constraints

∫ x‘(i)+hi

x‘(i)
�(x)dx = hi

V�i = mi for all i (52)

introducing the cell ‘material value’, mi. If we knew the subcell behavior, we could estimate
the amount of ‘material’ being swept through the (say, right) face of a given cell in time Ot
by calculating the 0ux integral

FIr(i)=
∫ Ot

0
ũr�r(t)dt=

∫ xr(i)

xr(i)−urOt
�(x)dx= ũr�̃rOt (53)

as suggested in Figure 22. In other words, we have replaced a time integral (representing the
average face value) by a spatial integral, making use of the advective characteristic, along
which ũrdt=dx. We perform a similar calculation for each (right) face of every cell, noting
that FI‘(i)=FIr(i − 1). Then the updated material value in any cell i is set equal to the
current material value, plus what �ows into the cell through the left face, minus what �ows
out through the right

m+
i = hi

V�+
i =mi + FI‘(i)− FIr(i)= hi

V�i + FIr(i − 1)− FIr(i) (54)
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The most straightforward way of calculating the �ux integral in Equation (54) is by intro-
ducing the discrete �ux-integral variable,  i, de:ned at cell faces by the cumulative sum

 i =  0 +
i∑

p=1
mp =  0 +

i∑
p=1

hp
V�p (55)

where  i occurs at the right face of cell i. Note that any cell material value is given by the
diMerence of discrete  values across the cell

mi = hi
V�i =  i −  i−1 (56)

Given the discrete  i values, the next step is to interpolate  to give the subcell behavior,
 (x), making sure that the interpolation is collocated at the known face values. If we de:ne
the subcell behavior of the advected variable to be

�(x)=
d (x)
dx

(57)

this clearly satis:es the cell-average constraint, Equation (52), because of the collocation of
 (x) at cell faces

∫ x‘(i)+hi

x‘(i)
�(x)dx=

∫ xr(i)

x‘(i)

d 
dx

dx=  i −  i−1 =mi (58)

using Equation (56). With the assumed subcell bahavior of  (x), we are now in a position
to evaluate the �ux integral

FIr(i)=
∫ xr (i)

x∗r (i)
�(x)dx=

∫ xr(i)

x∗r (i)

d (x)
dx

dx=
∫  i

 (x∗r )
d =  i −  (x∗r ) (59)

where x∗r (i)= xr(i)− ũrOt is the foot of the advective characteristic sweeping �ux through the
right face of cell i, as shown in Figures 2 and 22. This is called the sweep point. The :rst
term on the right of Equation (59) is the (known) discrete  value at the right face of cell
i; the �ux integral algorithm thus hinges on the interpolation of  (x) at the sweep point, x∗r .
The �ux-integral algorithm can be summarized as follows:

(i) Given current values of mi (or V�i), compute the current discrete  i values from the
running sum, Equation (55); this is done once per time step.

(ii) Estimate the sweep-point value,  (x∗r ), for the right face of each cell, using an appro-
priate  interpolation, collocated at the known face values.

(iii) Compute the �ux integral for (the right face of) each cell, using Equation (59); only
one �ux-integral term per cell is needed because of �ux uniqueness.

(iv) Update m+
i (or V�+

i ) from Equation (54). If needed, Equation (57) gives �(x).

Note that the ‘cost’ of the algorithm is in the interpolation of step (ii); the cost of the
other steps is negligible. Just what constitutes appropriate interpolation in the subject of the
remainder of this section. Since there is a strong analogy between �ux-integral methods and
semi-Lagrangian methods, we will start by stating some general rules for even- and odd-
order �ux-integral schemes. We will then look at a few examples in order to visualize what’s
happening in speci:c cases, and relate this to the corresponding semi-Lagrangian schemes.
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Figure 23. Generic  interpolation stencil for an even-order �ux integral method. M
is an even integer. The balance point is at the face common to cells k and k +1. In
the case shown, the balance point has been placed at the downwind end of the cell

containing the sweep point, giving a downwind-biased stencil.

Figure 23 shows an even-order  stencil suitable for an M th-degree polynomial interpolant
for  (x) collocated at discrete  values occurring at (M+1) face locations (M =even integer).
The balance point is at the center of the  stencil, at the face shared by cell k and cell (k+1);
this is where  k occurs. For simplicity, constant cell widths are assumed. The sweep point
(SPr) is shown at a distance h� to the left of the right face of cell k. Figure 23 is the
�ux-integral analogue of the semi-Lagrangian even-order stencil, Figure 3. Note that when
we refer to a particular cell, this also includes both faces adjoining the cell; however, the
notation for discrete  values indicates that they occur at the right face of the corresponding
cell. By analogy with the semi-Lagrangian stability analysis, we will anticipate the stability
condition for appropriate interpolation by giving the �ux-integral balance point location rule:

The balance point must be located in the same cell as the sweep point.

or, equivalently, in terms of �, for even-order schemes

−16�6+1 (60)

This is both necessary and su;cient for stable interpolation of the sweep point value of the
�ux-integral variable,  (x∗r ), for even-order methods.
We see (as in the semi-Lagrangian formulation) that for even-order schemes, the balance

point location rule allows two possible stencil locations. Figure 23 shows the downwind-biased
situation—the balance point is located at the downwind face of the cell containing the sweep
point. Upwind biasing occurs when the balance point is located at the upwind face of the cell
containing the sweep point; this is easily visualized (imagine SPr occurring in cell k + 1).
For odd-order schemes, the generalized stencil is shown in Figure 24. In this case, the

balance point occurs at the midpoint of the central cell. The relative co-ordinate, �, is measured
(positive to the left) from the right face of cell k to the sweep point. Stable stencil placement
is again governed by the balance point location rule:

The balance point must be located in the same cell as the sweep point.

In this odd-order case, this means that � must be in the range

06�61 (61)
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Figure 24. Generic  interpolation stencil for an odd-order �ux integral method. N is an odd integer.
The balance point is at the center of cell k, which contains the sweep point.

This represents both necessary and su;cient conditions for stable interpolation of  (x∗r ). As
in the case of odd-order semi-Lagrangian schemes, the balance point location rule gives a
unique prescription for stencil placement for odd-order sweep point interpolation.
In order to get some ‘feel’ for the mechanics of the �ux-integral method, we will now run

through the details of :rst-, second-, and third-order methods. And we can see how these relate
to the corresponding semi-Lagrangian schemes. In particular, we will see that, under constant-
velocity conditions (ũ‘ = ũr = ũ=constant), the corresponding update algorithms are identical
in form. (As a matter of practical importance, the operation count is virtually the same for
both methods, even in the variable-velocity case; the �ux-integral method, however, has the
added advantage of inherent conservation because of the control-volume �ux formulation and
the �ux-uniqueness conditions.)
Figure 25 shows the situation for a :rst-order �ux-integral method. Discrete  values and

piecewise-linear  (x) interpolants are shown in part (a) of the :gure. Part (b) shows the
corresponding piecewise-constant �(x) behavior; in other words, �(x)= V�j over each cell j,
with discontinuities at cell faces, corresponding to the sudden changes in the slope of  (x).
The amount of material swept through the right face of cell i consists of an integer number
of cell material values from cell i back to cell k +1, plus a portion of the material in cell k.
In order to compute FIr(i) from Equation (59), we need the interpolated value  ∗=  (x∗r ).
We see that the linear interpolation implies

 ∗(i)=  k − �( k −  k−1)=  k − h� V�k (62)

The �ux integral is therefore

FIr(i)=  i − [ k − h� V�k]=  i −  k + h� V�k = h
i∑

k+1

V�p + h� V�k =
i∑

k+1
mp + h� V�k (63)

in this case, con:rming the above description. In the general (variable-velocity) case, there
is a similar calculation for FI‘(i)=FIr(i − 1), and the explicit update proceeds according to
Equation (54).
In the constant-velocity case, we can make some further simpli:cations. In particular, the

left-face �ux integral for cell i is

FI‘(i)=FIr(i − 1)=  i−1 −  k−1 + h� V�k−1 (64)
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Figure 25. First-order integral method. (a) Piecewise-linear collocated interpolant for  (x∗r ).
(b) Corresponding piecewise-constant �(x).

Note that the indexes are exactly one less than those of Equation (63) and that � has the
same numerical value for both faces. The constant-velocity update becomes

m+
i = h V�+

i = h V�i + [ i−1 −  k−1 + h� V�k−1]− [ i −  k + h� V�k]

= h V�i − ( i −  i−1) + ( k −  k−1)− h�( V�k − V�k−1)

= h V�i − h V�i + h V�k − h�( V�k − V�k−1) (65)

Cancelling terms and dividing through by h gives a familiar formula

V�+
i = V�k − �( V�k − V�k−1) (66)

identical in form to the :rst-order semi-Lagrangian update, Equation (11), with the exception
that cell-average values replace nodal-point values. [For :rst-order (and second-order) �ux-
integral formulations, nodal-point values are equal to cell-average values; for third- and higher-
order schemes, this is not the case.]
A Fourier–von Neumann analysis of Equation (66) leads to the same conclusions as for

the semi-Lagrangian stability analysis of Equation (11)

06�61 (67)

a necessary and su;cient condition for stability of the :rst-order scheme in the constant-
velocity case. For variable velocity, we simply assume that the same condition applies to �
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Figure 26. Second-order �ux integral method. (a) Downwind-weighted piecewise-parabolic collocated
interpolant for  (x∗r ). (b) Corresponding downwind-weighted piecewise-linear interpolant for �(x).

for each individual sweep point. This is a common and practical assumption when using the
(necessarily constant-velocity) von Neumann stability analysis applied to variable-velocity
algorithms. A wide range of computations, at various orders of accuracy, using strongly
varying velocity :elds, has demonstrated this to be a uniformly successful strategy [5]. In
other words, the balance point location rule, applied directly to the  stencil in the variable-
velocity case, seems to be entirely satisfactory in establishing stable computations.
We turn now to a second-order interpolation of  (x) shown in Figure 26. The balance point

is at the common center face of the two-cell stencil. The case shown corresponds to downwind
biasing (the balance point is at the downwind face of the sweep point cell). The interpolant
for the �ux-integral variable,  (x), is a collocated parabola through  k−1;  k , and  k+1. Note
how the subcell �(x) is downwind biased; over cell k, it is a linear interpolant between node
values V�k and (the downwind) V�k+1. The dotted portions of the interpolants  (x) and �(x)
across cell k + 1 do not apply to that cell; instead, a diMerent (downwind-biased) interpolant
would be used, as suggested in part (b) of the :gure (a linear interpolant between V�k+1 and
V�k+2).
The quadratic interpolation gives

 ∗(i) =  k − �
2
( k+1 −  k−1) +

�2

2
( k+1 − 2 k +  k−1)

=  k − h�
2
( V�k+1 + V�k) +

h�2

2
( V�k+1 − V�k) (68)
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If we proceed directly to the constant-velocity formula, we see

h V�+
i = h V�i +

[
 i−1 −  k−1 +

h�
2
( V�k + V�k−1)−

h�2

2
( V�k − V�k−1)

]

−
[
 i −  k +

h�
2
( V�k+1 + V�k)−

h�2

2
( V�k+1 − V�k)

]
(69)

or, collecting terms and dividing through by h

V�+
i = V�k −

�
2
( V�k+1 − V�k−1) +

�2

2
( V�k+1 − 2 V�k + V�k−1) (70)

identical in form to the second-order semi-Lagrangian update, Equation (30), with node val-
ues once again replaced by cell averages. The stability analysis follows directly from Equa-
tion (33), so that we have

−16�6+1 (71)

as the necessary and su;cient condition for stability, corresponding to the general balance
point location rule for even-order �ux-integral methods. Again we assume (with con:dence
gained through numerical experimentation) that the same conditions apply directly to � for
each sweep point evaluation in the variable-velocity case.
Finally, we look at the third-order �ux-integral formulation corresponding to a cubic inter-

polant for  (x) collocated through four adjacent discrete  values, as shown in Figure 27(a).
Figure 27(b) then gives the corresponding parabolic interpolant for �(x)=d =dx, showing
how the node value within cell k diMers from the cell average. Each three-cell interpolant
is used only over the respective central cell, as sketched in the :gure. Following the usual
procedure, we :nd that the third-order sweep point value is

 ∗
i =  k − h�

2
( V�k+1 + V�k) +

�2

2
( V�k+1 − V�k) +

h�(1− �2)
3!

( V�k+1 − 2 V�k + V�k−1) (72)

And the corresponding constant-velocity update becomes

V�+
i = V�k −

�
2
( V�k+1 − V�k−1) +

�2

2
( V�k+1 − 2 V�k + V�k−1)

+
�(1− �2)

3!
( V�k+1 − 3 V�k + 3 V�k−1 − V�k−2) (73)

identical in form to Equation (35); but in this case, �j ≡�(xj) �= V�j. The �ux-integral stability
analysis parallels that of the third-order semi-Lagrangian scheme, resulting in

06�61 (74)

as usual for odd-order schemes.
We can already see the strong parallels between the �ux-integral formulation and the

semi-Lagrangian analysis described in the previous section. Whereas the semi-Lagrangian
method focuses on the interpolation of the advected variable at the departure point, the key
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Figure 27. Third-order �ux integral method. (a) Piecewise-cubic interpolant for the
sweep point  (x∗r ), collocated at discrete  values located at cell faces. (b) Corres-

ponding subcell piecewise-parabolic interpolant for �(x).

to the �ux-integral method is the interpolation of the �ux-integral variable at the sweep point.
A Pth-degree polynomial for �(x) collocated at P + 1 nodal points for the discrete � val-
ues in the semi-Lagrangian formulation corresponds directly to a Pth-degree polynomial for
 (x) collocated at P + 1 face locations for the discrete  values in the �ux-integral for-
mulation. In each case, this results in a Pth-order update algorithm. There are two main
diMerences:

(i) Semi-Lagrangian methods update nodal-point values of the advected variable, whereas
�ux-integral methods updated cell averages (or material values).

(ii) Flux-integral methods are inherently conservative in variable-velocity advection :elds,
whereas most semi-Lagrangian formulations are not.

Multidimensional �ux-integral Eulerian schemes are formulated on structured quadrilateral
or hexahedral grids. The process is closely related to component-wise operator splitting,
but without the concomitant splitting error that that incurs. Naive operator splitting, using
conservative-form operators in each co-ordinate direction, results in a form of splitting error
called ‘lumpiness’—an initially uniform scalar does not remain uniform in a solenoidal advec-
tion :eld as it must, physically. Details of the construction of multidimensional unrestricted-
time-step conservative and constancy-preserving explicit Eulerian advection schemes are fully
described in Reference [5].
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4. CONCLUSIONS

The stability analysis in this paper has been aimed in part at clearing up some of the inconsis-
tencies in the computational �uid dynamics literature concerning the meaning of the Courant–
Friedrichs–Lewy condition as applied to advective modeling. Rephrased in semi-Lagrangian
terminology, the original CFL paper simply states that (for advection) the numerical domain
of dependence of the arrival point (i.e., the spatial stencil) must include the physical do-
main of dependence of the arrival point (i.e., the single departure point). Although necessary,
this is not precise enough to oMer practical guidelines for stable stencil placement, espe-
cially for higher-order methods involving interpolation stencils wider than one or two mesh
widths.
The much more restrictive interpretation of ‘the CFL condition’, i.e., ‘Courant-number-

less-than-or-equal-to-one’, appears to have arisen from the primary example discussed in the
original paper itself. This involves an arrival-point-centered, nearest-neighbor stencil (now
known as the Leapfrog scheme)—which, of necessity, results in the |c|61 condition. This
condition happens to be the stability requirement for a number of :nite-diMerence methods
resulting from subsequent (but relatively early) attempts at explicit modeling of the advection
equation; e.g., Lax–Friedrichs [15], Lax–WendroM, and :rst-order upwinding, in addition to
the Leapfrog scheme itself. Most textbooks that cover the subject discuss the domain-of-
dependence argument of the original CFL paper as a necessary condition as well as giving
examples of speci:c arrival-point-nearest-neighbor Eulerian schemes, for which |c|61 is the
appropriate stability condition. Unfortunately, a reader may easily get the impression that
|c|61 is the stability condition for explicit schemes in general. Some authors reinforce this
belief by explaining that this is a ‘natural’ [7] or ‘physical’ [8] constraint. This, in turn,
implies severe restrictions on the time step, so that explicit Eulerian schemes are ‘known’ to
be very ine;cient.
Explicit semi-Lagrangian schemes have become quite popular, largely as a result of the

fact that they have no stability restrictions on the time step. In fact, the perceived ‘condi-
tional stability’ of Eulerian schemes has been a prime motivating factor in the development
of unconditionally stable semi-Lagrangian schemes. Another reason is that accuracy, espe-
cially phase accuracy, is usually very good; this results from the common practice of using
third-order (particularly cubic-spline) departure point interpolators. Unfortunately, because of
the belief that explicit Eulerian schemes are governed by |c|61, the unconditional stability
of explicit semi-Lagrangian schemes has led to some confusion in the literature. Claims that
semi-Lagrangian schemes oMer ‘the possibility of using time steps that exceed those per-
mitted by the Courant–Friedrichs–Lewy (CFL) stability criterion for Eulerian discretizations
of advection-dominated �ows’ [16] and other equivalent statements in the current literature
[17–19] demonstrate a common and continuing misuse of the terminology. And one highly
regarded modern textbook is perhaps indicative of the problem when it explains that explicit
semi-Lagrangian methods ‘cannot be classi:ed as explicit’ [7].
There is another more subtle misconception that can be paraphrased as follows. ‘The CFL

condition restricts the time step as a function of the advecting velocity and the number of
spatial meshes used; as one increases the size of the stencil, one can increase the time step’.
The concept here is that the interpolating stencil needs to include both the departure point
and the arrival point [20]. As seen in this paper, the arrival point is irrelevant in estimating
the departure point value. It is not the size of the stencil that is important (for stability)—but
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its location relative to the departure (or sweep) point. Under no circumstances is there any
need to include the arrival point in the departure point interpolator stencil.
For the purpose of constructing stable algorithms, the original Courant–Friedrichs–Lewy

inclusion condition is no more speci:c than the need to interpolate—which itself (above
second-order) cannot guarantee stability. However, we have seen that there is a simple rule
for placement of the interpolation stencil so as to guarantee stable results. This is based on the
concept of the balance point for various types of stencils. For semi-Lagrangian schemes, the
balance point is located at the central node of an even-order interpolation stencil or at the mid-
point of the central patch of an odd-order stencil. Once the departure point (corresponding
to each arrival point) is known, the balance point location rule is very simply stated and
implemented:

The balance point must be located in the same patch as the departure point.

This is both necessary and su;cient for the stable construction of semi-Lagrangian algorithms.
It gives a unique stencil location for odd-order methods and two possibilities for even-order,
corresponding to downwind and upwind biasing. For even-order methods, we must therefore
make a further velocity-direction-dependent decision, depending on which type of biasing
is preferred. Alternatively, the velocity-direction-independent strategy for even-order methods
suggested by Dietachmayer [21] can easily be implemented using the balance point concept:
in this case, the balance point must be located as close as possible to the departure point
[12]. This gives unique placement and is su;cient (though not necessary) for even-order
stability. It does not aMect the odd-order stencil placement. Note that, because of the sudden
switchover between upwinding and downwinding in the even-order case, discontinuities in
�(x) will occur in the departure point interpolant midway between grid-points.
Although :rst-order schemes have been considered here (for demonstration purposes only),

it need hardly be said that :rst-order methods are so arti:cially numerically diMusive that they
should not be used for practical calculations. As we have seen, all even-order schemes exhibit
poor phase accuracy—phase-lag numerical dispersion for downwind-biased schemes and an
equally dispersive phase lead for upwind-biased even-order schemes. By distinct contrast,
odd-order methods have quite low phase error. Since :rst-order must be excluded because of
its inherent arti:cial diMusion and all even-order methods should be avoided because of their
inherent arti:cial dispersion, this leaves third-order schemes as the lowest order that should
be used for advective modeling.
Third-order interpolants have been very successful in semi-Lagrangian schemes [9] as has

the large-Ot generalization of the third-order QUICKEST Eulerian scheme [4]. Current re-
search should focus on :fth-order (e.g., quintic spline) or seventh-order interpolants in combi-
nation with universal-limiter shape-preservation techniques [4; 5]. Boundary conditions should
be handled to the same degree of accuracy as that of the internal algorithm. This is easily
achieved by using a type of analytic continuation of the advected variable across the boundary
to the appropriate number of external pseudo-nodes (or pseudo-cells). The all too common
practice of using low-order, especially :rst-order, boundary conditions in combination with a
higher-order interior method is extremely ill advised.
The special class of schemes that are usually associated with the narrowly restrictive inter-

pretation of ‘the CFL condition’ can be described as follows: the balance point is speci:cally
located in the same patch as the arrival point. The list of such schemes would include
well-known odd-order so-called ‘upwind’ methods (which are actually based on velocity-
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direction-independent interpolator stencils) such as :rst-order upwinding and the QUICKEST
scheme [22], together with even-order so-called ‘central’ schemes (which are actually based
on downwind-biased departure point interpolator stencils) such as Leapfrog, Lax–WendroM,
fourth-order ‘central’, etc. The latter should be called ‘even-order downwind-biased’ schemes;
by contrast, the ‘upwinding’ in the odd-order schemes stems directly from the fact that the
departure point is, by de:nition, upwind of the arrival point; the odd-order stencil is indepen-
dent of velocity direction. All of these schemes are governed by |c|61, the most widespread
interpretation of ‘the CFL conditions’. The list also includes even-order ‘upwind’ schemes
(with the balance point at i − 1 for ũ¿0), second-order being the best known. These are
governed by |c|62. These are truly upwind-biased schemes for 0¡|c|¡1; but for 1¡|c|¡2,
the stencils are actually downwind biased (with respect to the departure point).
Regarding the belief that there is something inherently ‘natural’ or ‘physical’ about con-

straints on the Courant number to be less than or equal to one, it should now be clear
that, on the contrary, it is quite unnatural to center the interpolation stencil on the arrival
point when we are trying to make an estimate of the departure point (or sweep point) value.
A �uid particle may cross any number of mesh widths in a single time step—provided the
information it carries has been obtained by appropriate means; i.e., by stable departure point
(or sweep point) centered intepolation.
Roache’s paper in 1992 laid the ground-work for the development of unconstrained-Ot

Eulerian advection schemes using higher-order shape-preserving techniques, equal in e;ciency
to comparable semi-Lagrangian schemes, but with the added advantage of inherent conserva-
tion due to the �ux-based formulation. Using the �ux-integral formulation, the main point of
which is the evaluation of the sweep point value of the �ux-integral variable, we have seen
that the balance point location rule can be used to establish an appropriate sweep point stencil
placement strategy.

The balance point must be located in the same cell as the sweep point.

Again, this is both necessary and su;cient for the construction of stable explicit algorithms.
For even-order Eulerian schemes, the balance point sits at a control-volume face at the cen-
ter of the stencil; for odd-order it is at the mid-point of the central cell. As in the semi-
Lagrangian formulation, the balance point location rule for �ux-integral Eulerian methods gives
a unique stencil location for odd-order sweep point interpolators and two possibilities for even-
order, corresponding to downwind and upwind biasing. Perhaps a procedure analogous to the
Dietachmeyer strategy might be contemplated. However, this results in mid-cell disconti-
nuities in  (x), implying delta-functions in �(x). This complexity seems unwarranted, es-
pecially when odd-order methods are so much better behaved in terms of phase
accuracy.
In summary, it appears that the Courant–Friedrichs–Lewy condition—both the original in-

clusion condition and the commonly held narrow interpretation, |c|61 (or |c|62 in some
cases)—should be considered as being of historical interest but of little practical importance
in advective modeling. It is perhaps signi:cant that in most semi-Lagrangian literature, ref-
erence to ‘the CFL condition’ rarely arises—except in relation to the supposed shortcomings
of Eulerian schemes! Once one realizes that the arrival point is irrelevant in constructing the
explicit update algorithm and that departure point (or sweep point) interpolator stencil cen-
tering is the key to a stable computation, all the mystery and apparent con�icts surrounding
‘the CFL condition’ evaporate.
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APPENDIX A. RECURSION RELATIONS FOR HIGHER-ORDER METHODS

Tables AI and AII show a list of (a slight variation on) the well-known coe;cients of Pascal’s
triangle and a related set of coe;cients, respectively. The entry in any position in any row
(below the :rst) can be obtained by subtracting the left-adjacent entry from the right-adjacent
entry in the row above. Clearly, the tables can be extended recursively to arbitrarily high-
order. These form a handy compilation of coe;cients appearing in various diMerence formulas,
discussed below.

A.1. Fourier–von Neumann transforms

We consider a wave, registered with respect to the arrival point, grid-point i, with an amplitude
normalized to one: exp[Y�(x − xi)]. Then we have the following:

�i =1; �i−1 = exp(−Y�); �i−2 = exp(−2Y�) (A1)

In particular

�k ±m = exp[−Y(i − k)�] exp(± Ym�) (A2)

For the local complex amplitude ratios used in this paper, we are concerned with the second
factor. We therefore make the association

�k ±m ⇒ exp(± Ym�)= cos(m�)± Y sin(m�) (A3)

Table AI. Pascal’s triangle.

0 0 0 0 +1 0 0 0
1 0 0 0 +1 −1 0 0 0
2 0 0 +1 −2 +1 0 0
3 0 0 +1 −3 +3 −1 0 0
4 0 +1 −4 +6 −4 +1 0
5 0 +1 −5 +10 −10 +5 −1 0
6 +1 −6 +15 −20 +15 −6 +1
7 +1 −7 +21 −35 +35 −21 +7 −1
.
. . . . . . . . . . . . . . . .
.

Table AII. Related triangle.

0 0 0 0 0 +1 +1 0 0 0 0
1 0 0 0 +1 0 −1 0 0 0
2 0 0 0 +1 −1 −1 +1 0 0 0
3 0 0 +1 −2 0 +2 −1 0 0
4 0 0 +1 −3 +2 +2 −3 +1 0 0
5 0 +1 −4 +5 0 −5 +4 −1 0
6 0 +1 −5 +9 −5 −5 +9 −5 +1 0
7 +1 −6 +14 −14 0 +14 −14 +6 −1
.
. . . . . . . . . . . . . . . . . . . .
.
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Now we list a number of diMerence expressions and their associated transforms, making use
of the coe;cients in Tables AI and AII. The so-called binomial coe;cients appearing in the
following even-order diMerences are well known. Above :rst-order, the odd-order coe;cients
are perhaps less well known, but they can be read directly from Table AII (noting the factor
of 1

2 in each expression). Note that the trigonometric expressions can always be reduced to
products of Y sin � and powers of [−2(1− cos �)].
First diMerence centered at k

1
2 (�k+1 − �k−1) ⇒ Y sin � (A4)

Second diMerence centered at k

�k+1 − 2�k + �k−1 ⇒ [−2(1− cos �)] (A5)

Third diMerence centered at k

1
2 (�k+2 − 2�k+1 + 2�k−1 − �k−2) ⇒ Y sin �[−2(1− cos �)] (A6)

Fourth diMerence centered at k

�k+2 − 4�k+1 + 6�k − 4�k−1 + �k−2 ⇒ [−2(1− cos �)]2 (A7)

Fifth diMerence centered at k

1
2 (�k+3 − 4�k+2 + 5�k+1 − 5�k−1 + 4�k−2 − �k−3) ⇒ Y sin �[−2(1− cos �)]2 (A8)

Sixth diMerence centered at k

�k+3 − 6�k+2 + 15�k+1 − 20�k + 15�k−1 − 6�k−2 + �k−3 ⇒ [−2(1− cos �)]3 (A9)

And this can be continued to arbitrarily higher-order diMerences.
It is easy to see the pattern in these successively higher-order diMerences. Let M be an

even integer. Then the M th diMerence centered at k has a (real) transform

M th diMerence ⇒ [−2(1− cos �)]M=2 (A10)

and the (M + 1)st diMerence centered at k has a (pure imaginary) transform

(M + 1)st diMerence ⇒ Y sin �[−2(1− cos �)]M=2 (A11)

A.2. Explicit semi-Lagrangian updates

We now list a series of explicit semi-Lagrangian update formulas, beginning with :rst-order
and continuing recursively to higher and higher order. All the diMerences occurring in the even-
order updates are centered at grid-point k (the balance point). The highest-order diMerence
in each of the odd-order updates is centered at k − 1

2 (the position of the balance point
for odd-order semi-Lagrangian stencils), but the lower-order diMerences in odd-order updates
are centered at k. For consistency, and in order to see the recursive relationships between
successive orders, we rewrite the odd-order diMerences as the diMerence of two diMerences
centered at k. Some examples will illustrate this notation. The descriptions assume that ũ¿0.
If ũ¡0, the terms ‘upwind’ and ‘downwind’ should be interchanged.
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A.2.1. First-order

�+
i (1st)=�k − �(�k − �k−1) (A12)

or, rewriting the (k − 1
2 )-centered :rst diMerence

�+
i (1st)=�k − �

[
1
2
(�k+1 − �k−1)− 1

2
(�k+1 − 2�k + �k−1)

]
(A13)

valid for 06�61.

A.2.2. Second-order

�+
i (2nd)=�k − �

[
1
2
(�k+1 − �k−1)− �

2
(�k+1 − 2�k + �k−1)

]
(A14)

valid for −16�60 (upwind biasing) and 06�6+1 (downwind biasing). Note the strong
similarity between Equations (A13) and (A14); the formulas diMer only in one coe;cient.

A.2.3. Third-order

�+
i (3rd) =�k − �

[
1
2
(�k+1 − �k−1)− �

2
(�k+1 − 2�k + �k−1)

]

+
�(1− �2)

3!
(�k+1 − 3�k + 3�k−1 − �k−2) (A15)

The (k − 1
2 )-centered third diMerence is then rewritten as the diMerence between a k-centered

third diMerence and half a k-centered fourth diMerence. Since the :rst terms on the right-hand
side constitute the second-order update, we rewrite the third-order formula in recursive form
as

�+
i (3rd) =�+

i (2nd) +
�(1− �2)

3!

[
1
2
(�k+2 − 2�k+1 + 2�k−1 − �k−2)

− 1
2
(�k+2 − 4�k+1 + 6�k − 4�k−1 + �k−2)

]
(A16)

A.2.4. Fourth-order. We go straight to the recursive form

�+
i (3rd) =�+

i (2nd) +
�(1− �2)

3!

[
1
2
(�k+2 − 2�k+1 + 2�k−1 − �k−2)

− �
4
(�k+2 − 4�k+1 + 6�k − 4�k−1 + �k−2)

]
(A17)

Carefully compare the coe;cients of the last terms in each of Equations (A16) and (A17).
A recursive pattern is beginning to become discernible.
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A.2.5. Fifth-order

�+
i (5th) =�+

i (4th)

− �(1− �2)(4− �2)
5!

[
1
2
(�k+3 − 4�k+2 + 5�k+1 − 5�k−1 + 4�k−2 − �k−3)

− 1
2
(�k+3 − 6�k+2 + 15�k+1 − 20�k + 15�k−1 − 6�k−2 + �k−3)

]
(A18)

A.2.6. Sixth-order

�+
i (5th) =�+

i (4th)

− �(1− �2)(4− �2)
5!

[
1
2
(�k+3 − 4�k+2 + 5�k+1 − 5�k−1 + 4�k−2 − �k−3)

− �
6
(�k+3 − 6�k+2 + 15�k+1 − 20�k + 15�k−1 − 6�k−2 + �k−3)

]
(A19)

A.3. Generalized recursion relations

The recursive pattern has become clear. We can now write down recursive formulas for
arbitrarily high-order semi-Lagrangian updates. Let N be an odd integer and M an even
integer. The odd-N th-order recursive update formula (for N¿3) has the form

�+
i (N th) =�+

i [(N − 1)st]

− �
N !

(N−1)=2∏
p=1

(�2 − p2)
{
[N th diM]k − 1

2
[(N + 1)st diM]k

}
(A20)

where the notation implies diMerences centered at k, as we have seen in the examples.
The even-order recursive update formula (for M¿4) is

�+
i (M th) =�+

i [(M − 2)nd]

− �
(M − 1)!

M=2−1∏
p=1

(�2 − p2)
{
[(M − 1)st diM]k − �

M
[M th diM]k

}
(A21)

A.4. Complex amplitude ratios

We can now write down successive (local) CARs in a format consistent with recursive gen-
eration of higher-order formulas, using the von Neumann transforms derived earlier.

G1 = 1 + �
{
1
2
[−2(1− cos �)]− Y sin �

}
(A22)
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G2 = 1 + �
{
�
2
[−2(1− cos �)]− Y sin �

}
(A23)

G3 =G2 +
�(�2 − 12)

3!

{
1
2
[−2(1− cos �)]2 − Y sin �[−2(1− cos �)]

}
(A24)

G4 =G2 +
�(�2 − 12)

3!

{
�
4
[−2(1− cos �)]2 − Y sin �[−2(1− cos �)]

}
(A25)

G5 =G4 +
�(�2 − 12)(�2 − 22)

5!

{
1
2
[−2(1− cos �)]3 − Y sin �[−2(1− cos �)]2

}
(A26)

G6 =G4 +
�(�2 − 12)(�2 − 22)

5!

{
�
6
[−2(1− cos �)]3 − Y sin �[−2(1− cos �)]2

}
(A27)

G7 =G6 +
�(�2 − 12)(�2 − 22)(�2 − 32)

7!

{
1
2
[−2(1− cos �)]4 − Y sin �[−2(1− cos �)]3

}

(A28)

G8 =G6 +
�(�2 − 12)(�2 − 22)(�2 − 32)

7!

{
�
8
[−2(1− cos �)]4 − Y sin �[−2(1− cos �)]3

}

(A29)

The recursive pattern is clear, following directly from expressions developed earlier in this
appendix. For N an odd integer (N¿3) and M even (M¿4), we can write general recursive
relations as follows. For odd-order

GN =GN−1 +
�
N !

(N−1)=2∏
p=1

(�2 − p2)

×
{
1
2
[−2(1− cos �)](N+1)=2 − Y sin �[−2(1− cos �)](N−1)=2

}
(A30)

and for even-order

GM =GM−2 +
�

(M − 1)!

M=2−1∏
p=1

(�2 − p2)

×
{

�
M

[−2(1− cos �)]M=2 − Y sin �[−2(1− cos �)]M=2−1
}

(A31)

From Equations (A22)–(A31), we see that the expression for GP is a complex Pth-degree
polynomial in �. Note that at the short-wavelength cutoM, when �=� rad (sin �=0; cos�=
− 1); GP is a real-valued Pth-degree polynomial.
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APPENDIX B. PROOF OF THE STABILITY CONDITIONS

We begin by looking at the behavior of G2 for the local CARs. In general

G2 = [Re(G)]2 + [Im(G)]2 (B1)

In Appendix A, we saw that a Pth-order CAR, GP, is a Pth-degree polynomial in � with
(complex) coe;cients involving products of Y sin � powers of [−2(1− cos �)]. Thus, G2

P is a
polynomial in � of degree 2P with real coe;cients. For reference, we show here plots of G2

P
versus � (with � ranging from 0 to � rad) for P equal to 1 through 4; the unstable regions
are shown shaded for � between 0 and �.
In Figures B1, B2, B3 and B4, we notice several properties that extend to higher-order

because of the recursive nature of the structure of the G (and G2) formulas:

(i) All odd-order G2 plots are symmetrical about �=0:5.
(ii) All even-order G2 plots are symmetrical about �=0.
(iii) For N equal to an odd integer, G2

N ≡ 1 at all integer values of � from −(N − 1)=2 to
(N + 1)=2.

(iv) For M equal to an even integer, G2
M ≡ 1 at all integer values of � from −M=2 to

+M=2.
(v) The odd-order G2 plots all have a single turning point for � between 0 and 1 (at

�=0:5).
(vi) The even-order G2 plots all have a single turning point for � between 0 and 1; and

again, by symmetry, between 0 and −1.

These properties guarantee stability at all wavenumbers (06�6�) for 06�61 for odd-order
schemes, and −16�6+1 for even-order schemes. In other words, these ranges of � are

Figure B1. First-order G2
1(�; �) as a function of �, with � as a parameter.
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Figure B2. Second-order G2
2(�; �) as a function of �, with � as a parameter.

Figure B3. Third-order G2
3(�; �) as a function of �, with � as a parameter.

su8cient for stability. To show that these conditions are also necessary, we investigate the
slope of the G2 plots at �=1. If this can be shown to be positive (for any order), then the
above ranges of � are also necessary for stability (noting the respective symmetries). First,
we can see from the nature of the polynomials representing |GP| that this must indeed be the
case; however, an anlytical calculation will con:rm this.
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Figure B4. Fourth-order G2
4(�; �) as a function of �, with � as a parameter.

From the general de:nition of G2, Equation (B1), we have
(
@G2

@�

)
�=1

=
(
2Re

@Re(G)
@�

+2Im
@Im(G)

@�

)
�=1

(B2)

We know that (for any order) �=1 represents point-to-point transfer (from k−1 to i), in
which case the local G is exact

Gnum =Gexact = exp(−Y�)= cos �−Y sin � (B3)

So that we get
(
@G2

@�

)
�=1

=2 cos �
(
@Re(G)

@�

)
�=1

−2 sin �
(
@Im(G)

@�

)
�=1

(B4)

If this is positive (for some values of �), we know that instability occurs (i.e., G2¿1) for
�¿1, since G2 ≡ 1 at �=1.

Consider the :rst-order case

G1 = 1−�(1− cos �)−Y� sin � (B5)

From Equation (B4) we get
(
@G2

1

@�

)
�=1

=2(1− cos �) (B6)
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This is positive for 0¡�6� (and 0 for �=0), conforming to the behavior seen in the plot,
Figure B1.
For second-order, we get

(
@G2

2

@�

)
�=1

=2(1− cos �)2 (B7)

And this can now be continued to higher and higher order using the recursion relations
developed in Appendix A. We summarize the results, beginning again with :rst-order for
completeness:

1st order:
(
@G2

1

@�

)
�=1

=2(1− cos �) (B8)

2nd order:
(
@G2

2

@�

)
�=1

=2(1− cos �)2 (B9)

3rd order:
(
@G2

3

@�

)
�=1

=
2
3
(1− cos �)2 (B10)

4th order:
(
@G2

4

@�

)
�=1

=
2
3
(1− cos �)3 (B11)

5th order:
(
@G2

5

@�

)
�=1

=
4
15

(1− cos �)3 (B12)

6th order:
(
@G2

6

@�

)
�=1

=
4
15

(1− cos �)4 (B13)

7th order:
(
@G2

7

@�

)
�=1

=
4
35

(1− cos �)4 (B14)

8th order:
(
@G2

8

@�

)
�=1

=
4
35

(1− cos �)5 (B15)

9th order:
(
@G2

9

@�

)
�=1

=
16
315

(1− cos �)5 (B16)

10th order:
(
@G2

10

@�

)
�=1

=
16
315

(1− cos �)6 (B17)

The coe;cients appearing in these formulas follow from the recursive patterns outlined in
Appendix A. Speci:cally

1st and 2nd order: 2 (B18)

3rd and 4th order: 2−23

3!
=2−4

3
=

2
3

(B19)
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5th and 6th order:
2
3
−22(22−1)

5!
=

2
3
−2
5
=

4
15

(B20)

7th and 8th order:
4
15

−25(22−1)(32−1)
7!

=
4
15

− 16
105

=
4
35

(B21)

9th and 10th order:
4
35

−26(22−1)(32−1)(42−1)
9!

=
4
35

− 4
63

=
16
315

(B22)

From the structure of the sequence, we see that the coe;cients steadily decrease but are
always positive. And, since the factor (1− cos �) ranges from 0 (at �=0) to 2 (at �=� rad),
we see that the slope of the G2 plot with respect to � is positive at �=1 for all non-zero
wavenumbers (and, by symmetry, negative with the same magnitude at �=0 for odd-order
schemes, and at �=−1 for even-order).

This completes the proof that

06�61 (B23)

is both necessary and su;cient for the stability of odd-order advection schemes, and

−16�6+1 (B24)

is both necessary and su;cient for the stability of even-order advection schemes. This, in turn,
proves that the balance point location rule is both necessary and su;cient for unconditionally
stable placement of interpolation stencils for departure point evaluations in semi-Lagrangian
schemes and sweep point evaluations in Eulerian schemes.
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